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Phase separation kinetics of nematic polymers: Coupling between compositional order
and orientational order

Jun-ichi Fukuda
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 3 August 1998!

We numerically investigate phase separation kinetics of liquid crystalline polymers in a nematic state using
time-dependent Ginzburg-Landau equations for the compositional and the orientational order parametersf and
Si j . The kinetics is significantly influenced by~i! the presence of the off-diagonal kinetic coefficientLfS , ~ii !
the coupling between¹f andSi j in the free energy, and~iii ! the dependence of the kinetic coefficients on the
orientational order.@S1063-651X~98!51312-8#

PACS number~s!: 61.25.Hq, 64.70.Md, 64.75.1g
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Liquid crystalline polymers~LCP’s! have attracted much
interest because of their technological applications, such
fibers of high tensile strength and optical devices. Phase
havior of LCP’s has also been an important and fascina
problem of statistical mechanics, because of the rich var
of behaviors caused by the coupling between compositio
order and orientational order, and it has been shown tha
phase diagram of LCP’s and their mixtures sensitively
pends on temperature or their interaction@1#. The coupling
between compositional order and orientational order a
plays a significant role in phase separation kinetics of LCP
For example, mixtures of LCP’s and low molecular weig
liquid crystals in a nematic state exhibit a phase separatio
form a striated pattern parallel to the nematic orientation@2#.
Although there has been some theoretical effort@3–7#, the
understanding of how orientational order affects phase s
ration kinetics of LCP’s is still unsatisfactory. In a previou
work @7#, we derived the equations of motion for the com
positional and the orientational order parameters by using
biased reptation model@8#, and performed numerical simu
lations of phase separation, starting from an isotropic ini
condition. In this Rapid Communication we study kinetics
phase separation from a nematic state to check how p
separation kinetics is influenced by orientational order.

We consider a solution of main-chain liquid crystallin
homopolymers and define the following two ord
parameters: the volume fraction of polymersf(r)
5(a*0

Ldt f̂a(t,r) and the orientational orderSi j (r)
5(a*0

Ldt Ŝi j
a (t,r), with

f̂a~t,r!5
v0

b
d„r2Ra~t!…, ~1!

Ŝi j
a~t,r!5

v0

b Fui
a~t!uj

a~t!2
d i j

d Gd„r2Ra~t!…. ~2!

Here N, v0, and b are the degree of polymerization, th
monomer volume, and the average distance between adja
monomers, respectively. The configuration of theath chain
is represented byRa(t), wheret parameterizes the positio
along the chain running from 0 toL5Nb, and ui

a(t)
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[]Ri
a(t)/]t. The d is the spatial dimension of the system

From the definitionSi j is symmetric, andSi j 50 in the equi-
librium isotropic state.

In a previous work@7#, using the biased reptation mod
@8#, we have derived the equations of motion for these or
parameters, which read

]

]t
f~r!5E dr8H Lff~r,r8!

d~bF !

df~r8!

1LfSmn
~r,r8!

d~bF !

dSmn~r8!
J , ~3!

]

]t
Si j ~r!5E dr8H LfSi j

~r8,r!
d~bF !

df~r8!

1LSi j Smn
~r,r8!

d~bF !

dSmn~r8!
J . ~4!

Hereafter, summations over repeated Greek indices are
plied andF is the free energy of the system, which will b
given below. The kinetic coefficients are@7,8#

Lc1c2
~r,r8!5 2DcnE

0

L

dtE
0

L

dt8
]2

]t]t8

3^ĉ1
a~t,r!ĉ2

a~t8,r8!&, ~5!

wherec1 ,c25f or Si j . Dc is the diffusion constant for the
motion along a chain andn is the number of polymer chain
in the system. The averages^ & are taken in the local equilib
rium state specified byf(r) andS(r).

The single chain Hamiltonian that we use for the calcu
tions of the kinetic coefficients is that of a wormlike cha
@9–11#, bH5b(H01H1), with

bH0$R~t!%5E
0

L

dtH d

2lb
u~t!21

eb

2 S ]u~t!

]t D 2J , ~6!
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bH1$R~t!,hf~r! ,hSi j ~r!%5E drE
0

L

dt$hf~r!f̂~t,r!

1hSi j
~r!Ŝi j ~t,r!%. ~7!

Here b is the inverse temperature and we have introdu
the fieldshf(r) and hSi j

(r) conjugate to the order param

eters. Thee in H0 is a dimensionless bending elastic co
stant and we setl 54e/d @10,11# to ensure that̂ uu(t)u2&0
~statistical average overe2bH0) is equal to unity. The fol-
lowing calculations are done for the rigid rod limite→`.
We note that this model does not impose the constr
uu(t)u51 at eacht and allows the fluctuation of the segme
length. That is, we do not assume thatSi j is traceless.

In calculatingLfSi j
and LSi j Smn

, we use the approxima
tion as in Ref.@7# that the average in Eq.~5! is taken over the
unperturbed HamiltonianH0. To incorporate the anisotrop
of the diffusion due to the orientational order, we calcula
Lff by taking the average over the full HamiltonianH and
making a perturbation expansion up to first order inhf and
hSi j

. The fields are calculated by using a density functio
theory@11# and are given by, in a mean field approximatio

hf~r!52
ln f~r!

v0N
, ~8!

1

2
„hSi j

~r!1hSji
~r!…52

d2Qi j ~r!

2v0N
, ~9!

where Qi j [Si j /f is the orientational order per monome
and only the lowest order terms inQi j are retained. Similar
treatment has been employed by Kawakatsu@12# for the
phase separation kinetics of block copolymer melts. Th
Eqs.~3! and ~4! can be rewritten as

]

]t
f~r!5

bDcv0Nf̄

d H ]m@]m1~]mh̄f!2h̄Smn
]n#

dF

df~r!

1
2

d
]m]n

dF

dSmn~r!J , ~10!

]

]t
Si j ~r!5

bDcv0Nf̄

d H 2

d
] i] j

dF

df~r!
1

2

d2
X¹2

dF

dSi j ~r!

12S ] i]m

dF

dSj m~r!
1] j]m

dF

dSim~r! D CJ , ~11!

where f̄ is the average volume fraction of the polyme
h̄f5v0Nhf , and h̄Si j

5(v0N/d)(hSi j
1hSji

). In Eqs. ~10!

and ~11! we have made a gradient expansion and retai
only the lowest order terms in the gradients. Note that
diffusion of f due toLff is isotropic withouth̄f and h̄Si j

,

and that by introducingh̄Si j
, we can incorporate the effec

that polymers have a stronger tendency to diffuse paralle
the nematic direction.
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We numerically integrate Eqs.~10! and ~11! on a two-
dimensional 1283128 square lattice with the periodi
boundary conditions, using the Euler scheme. The free
ergy is taken to be@7,11#

v0bF5E drH f

N
ln f1

12f

N8
ln~12f!1xf~12f!

2
f

2N
Tr@ log~11dQ!2dQ#

2
1

2
wf2Tr@Q2~1/d!Tr Q#21

1

2
Wf~Tr Q!2

1
1

2f
C0~] if!21L0S ] if] jQi j 1

1

2f
Qi j ] if] jf D

1
1

2
L1f~]kQi j !

21
1

2
L2f] iQi j ]kQk jJ . ~12!

The first line is the Flory-Huggins energy with an isotrop
interaction parameterx. The following two lines are the en
ergy due to the orientation, and the term proportional tow is
the Maier-Saupe anisotropic interaction, which favors
nematic order. The term proportional toW is added as a
penalty for the fluctuation of the segment length. The l
two lines are the gradient energy, due to inhomogeneity, w
C05Nb2/12d,L05Nb2/12,L15dNb2/24, and L25dNb2/6
@11#.

For simplicity we setN5N8 and choose the paramete
xN52.7 andwN5WN55. The average volume fraction o
polymersf̄ is set to 0.5. The grid size and the time step a
taken to beDx50.25Nb and Dt5Dtfmin@d(Nb)2/Dcf̄#,
respectively, wherefmin is the minimum value off. We set
Dt50.0001 in cases 1, 2, and 3~see below!, and Dt
50.000 05 in case 4. We prepare the nematic initial con
tions oriented parallel to thex axis by assigning tof andQi j
at each lattice point random numbers uniformly distribut
in @f̄20.01,f̄10.01# and @Qi j 20.05,Qi j 10.05#, respec-
tively, with Q̄xx52Q̄yy50.3 andQ̄xy50. Note that phase
separation between a nematic phase, rich in polymers, an
isotropic phase, poor in polymers, occurs when we cho
the parameters above.

We investigate how phase separation kinetics is in
enced by the coupling between the compositional ordef
and the orientational orderSi j ~or Qi j ), which appears, in our
model, in~i! the presence of the off-diagonal kinetic coef
cient LfS , ~ii ! the coupling off andSi j in the free energy
F, and~iii ! the dependence of the kinetic coefficients on t
orientational order. We first check the effect of the o
diagonal component of the kinetic coefficientLfS . Al-
though earlier studies@4,5# based on a phenomenologic
argument neglected it, recent studies@6,7# showed that the
off-diagonal kinetic coefficient should appear in the kine
equations of LCP’s. Here we show the results withouth̄f

and h̄Si j
, and withL05L250 in the free energyF. Notice

that by settingL05L250, rotation of the frame and rotatio
of polymers ~or the orthogonal transformation ofQi j ) be-
come uncorrelated, thus the free energy possesses no a
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FIG. 1. Time evolution of the composition (f) profile for ~a! case 1~without LfS) and~b! case 2~with LfS). Darkness representsf.

The numbers are times after quench in units ofd(Nb)2/Dcf̄. The arrow indicates the direction of the nematic orientation.
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the composition profile in Fig. 1~a! without LfS’s in the
kinetic equations~10! and~11! ~refer to case 1 below!, and in
Fig. 1~b! with LfS’s ~case 2!. Apparently no anisotropy is
found in case 1, while we can observe a stripe pattern
pendicular to the nematic orientation in case 2. We str
here that the anisotropy found in case 2 arises for a pu
kinetic reason because there is no anisotropy in the free
ergy as stated above, and it can be understood by a sim
linear analysis of the growing mode, although we do n
show the detail of the calculation. Our results show that
off-diagonal components of the kinetic coefficients may p
an important role in phase separation kinetics.

Next we investigate the effect of the coupling betweenf
andSi j in the free energy, and how kinetics is altered due
the modification of the kinetic coefficientLff by the conju-
gate fieldshf and hSi j

. Thus, we recover the terms propo

tional to L0 and L2 in the free energy. In the calculatio
f
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below, we also retainLfS , and to avoid numerical difficul-
ties, h̄Si j

and L0 are multiplied by 0.7. We show the tim
evolution of the composition profile in Fig. 2~a! without the
fields h̄f and h̄Si j

~case 3!, and in Fig. 2~b! with these fields
~case 4!. Contrary to case 2, a striated pattern parallel to
nematic orientation is obtained in case 3, which closely
sembles that in an experiment of nematic-nematic ph
separation@2#, while in case 4, we can observe a stripe p
tern perpendicular to the nematic orientation similar to t
in case 2. We note that the free energy of an interface,
allel to the nematic orientation, is lower than that of a p
pendicular one due to the terms proportional toL0 in the free
energy, which leads to the pattern parallel to the nem
orientation in case 3. We also note that the tendency of p
mers to diffuse, parallel to the nematic orientation, leads
the density modulation, perpendicular to the nematic ori
tation as in case 4, which is schematically illustrated
Fig. 3.
FIG. 2. Time evolution of the composition profile for~a! case 3~without h̄f and h̄Si j
) and ~b! case 4~with h̄f and h̄Si j

).
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In Fig. 4 we show the time evolution of the characteris
lengths in the x and y directions, l i(t)52p/ k̄i(t) ( i
5x,y). The characteristic wave numberk̄i(t) is defined as
k̄i(t)5*dk duuki uS(k,u,t)/*dk duS(k,u,t) @13#, where
S(k,u,t)5S(kx5k cosu,ky5k sinu,t)5^uf(k,t)u2& is the
structure factor andf(k,t) is the Fourier transform o
f(r,t). The characteristic lengths evolve with time for a
cases~the saturation ofl y in case 4 is attributed to the finit
size effect!, andl x in case 3 andl y in cases 2 and 4 are large
than those in case 1, as can be seen in Figs. 1 and 2. We
that l y in case 3 evolves asl y;ta, with a.1/3, which is a
typical growth law for conserved systems@14#, and has been
obtained by experiments@2#.

In summary, we have numerically integrated the eq
tions of motion of LCP’s for the compositional and the o
entational order parameters from a nematic initial conditi
We have shown that the phase separation kinetics sensit
depends on the form of the kinetic equations and of the
energy. Finally, we comment on the reason phase separ
of nematic polymers in an experiment@2# leads to the pattern
similar to that in case 3, not in case 4. Since polymers
allowed to move only along themselves in the biased re
tion model, our model cannot incorporate the rotational d
fusion and the diffusion perpendicular to the polyme
which reduces the anisotropy in the kinetic coefficients, a
may play an important role in actual experiments. When
prepare a mixture of LCP’s and flexible polymers wi
LCP’s in a nematic state, phase separation may result

FIG. 3. Schematic illustration of the kinetic effect leading to t
density modulation, perpendicular to the nematic orientation~indi-
cated by dashed lines!.
ev
ote

-

.
ly
e

ion

re
a-
-
,
d
e

a

pattern, such as in case 4, because the rotational diffu
and the diffusion perpendicular to the polymers are s
pressed, due to the topological constraints imposed by fl
ible polymers.
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FIG. 4. Time evolution of the characteristic lengths~a! l x and

~b!l y . Time is measured in units ofd(Nb)2/Dcf̄.
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